Reading from a Head-Fixed Display during Walking: Adverse Effects of Gaze Stabilization Mechanisms
نویسندگان
چکیده
Reading performance during standing and walking was assessed for information presented on earth-fixed and head-fixed displays by determining the minimal duration during which a numerical time stimulus needed to be presented for 50% correct naming answers. Reading from the earth-fixed display was comparable during standing and walking, with optimal performance being attained for visual character sizes in the range of 0.2° to 1°. Reading from the head-fixed display was impaired for small (0.2-0.3°) and large (5°) visual character sizes, especially during walking. Analysis of head and eye movements demonstrated that retinal slip was larger during walking than during standing, but remained within the functional acuity range when reading from the earth-fixed display. The detrimental effects on performance of reading from the head-fixed display during walking could be attributed to loss of acuity resulting from large retinal slip. Because walking activated the angular vestibulo-ocular reflex, the resulting compensatory eye movements acted to stabilize gaze on the information presented on the earth-fixed display but destabilized gaze from the information presented on the head-fixed display. We conclude that the gaze stabilization mechanisms that normally allow visual performance to be maintained during physical activity adversely affect reading performance when the information is presented on a display attached to the head.
منابع مشابه
Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion.
The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2 m in fron...
متن کاملHead and body stabilization in blowflies walking on differently structured substrates.
Visually guided animals depend heavily on the quality of visual signals in order to obtain functionally relevant information about their environment. To support visual information processing, nature has evolved a large variety of physiological adaptations and behavioral strategies such as compensatory head movements. During self-movement, head rotations compensate for changes in body attitude i...
متن کاملVisual gaze control during peering flight manoeuvres in honeybees.
As animals travel through the environment, powerful reflexes help stabilize their gaze by actively maintaining head and eyes in a level orientation. Gaze stabilization reduces motion blur and prevents image rotations. It also assists in depth perception based on translational optic flow. Here we describe side-to-side flight manoeuvres in honeybees and investigate how the bees' gaze is stabilize...
متن کاملVestibular gaze stabilization: different behavioral strategies for arboreal and terrestrial avians.
In birds, it is thought that head movements play a major role in the reflexive stabilization of gaze and vision. In this study, we investigated the contributions of the eye and head to gaze stabilization during rotations under both head-fixed [vestibuloocular (VOR)] and head-free conditions in two avian species: pigeons and quails. These two species differ both in ocular anatomy (the pigeon has...
متن کاملVestibular gaze stabilization : different behavioral strategies for arboreal and terrestrial
In birds, it is thought that head movements play a major role in the reflexive stabilization of gaze and vision. In this study, we investigated the contributions of the eye and head to gaze stabilization during rotations under both head-fixed (VOR) and head-free conditions in two avian species, pigeons and quails. These two species differ both in ocular anatomy (the pigeon has two distinct fove...
متن کامل